Conferencias y Seminarios
Estimados y estimadas,
Los invitamos a la segunda sesión del seminario de Probabilidad para Estudiantes de Posgrado que se llevará a cabo el martes 28 de Septiembre a las 5pm. La idea del seminario es que sean charlas accesibles cuyo principal propósito es que los estudiantes conozcan diversas áreas activas de investigación en Probabilidad.
En esta ocasión Simon Harris de la Universidad de Auckland, Nueva Zelanda nos hablará sobre Branching Brownian motion with absorption.
Resumen:
We study a dyadic branching Brownian motion on the real line with absorption at 0, drift μ ∈ R and started from a single particle at position x > 0. When μ is large enough so that the process has a positive probability of survival, we consider K(t), the number of individuals absorbed at 0 by time t and for s ≥ 0 the functions ωs(x) := Ex[sK(∞)]. We show some properties for these functions. We give three descriptions of the family (ωs , s ) through a single pair of functions, as the two extremal solutions of the Kolmogorov-Petrovskii-Piskunov (KPP) traveling wave equation on the half-line, through a martingale representation and as an explicit series expansion. We also obtain a precise result concerning the tail behavior of K(∞). In addition, in the regime where K (∞) > 0 almost surely, we show that u(x, t) := Px (K (t) = 0) suitably centered converges to the KPP critical travelling wave on the whole real line.
Su plática se basará en el artículo: https://arxiv.org/pdf/1506.01429.pdf